Theranos Science & Technology: The Miniaturization of Laboratory Testing

Elizabeth Holmes therans

August 1, 2016

Scientific Exchange

- Some of the medical device technologies discussed today are regulated by the FDA and are not yet cleared or approved.
- This presentation is not intended to promote Theranos devices or testing.
- Theranos technologies are not intended or offered for sale or commercial use at this time.
- The purpose of our presentation is to provide an exchange of scientific information about Theranos' inventions and technologies.

Our mission is to make actionable health information accessible at the time it matters

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

3

Theranos Technologies

Reagents and Assays for Small-Volume Samples

Presentation Overview

I. Miniaturization of laboratory testing

II. miniLab results across detection methodologies

III. Small sample volumes: collection of capillary blood and analysis

Miniaturization and Integration of Detection Systems

Images not to scale

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

6

Miniaturization and Integration of Processing Modules

Theranos Sample Processing Unit (miniLab)

Multi-faceted Material Handling Robot Allows Versatility

- Multiple volumes simultaneously
- Transports consumables
- Transfers fluids
 - \bullet Precision: 2.75% at 2 μL
 - Accuracy: 2 μL \pm 2.0%

Cartridge Carries Sample and Reagents

- Single use
- On-board controls
- All reagents and waste onboard
- No tubing
- Barcode control

theran_s

Cartridges: Customized to the Assays

Video of Cartridge Components

Theranos Virtual Analyzer (TVA) Enables Remote Processing and Analysis

- Recognizes barcode on cartridge
- Facilitates two-way communication
- Dictates protocol for device
- Remote interpretation of digital images and results, reviewed and released through clinical lab

Protocols remotely downloaded for novel analytes on existing systems

Video of miniLab

Presentation Overview

I. Miniaturization of laboratory testing

II. miniLab results across detection methodologies

III. Small sample volumes: collection of capillary blood and analysis

Clinical Chemistry: Precision and Method Comparison

Clinical Chemistry: Spectrophotometer

- Measures absorbance across UVvisible spectrum
- Colorimetric and turbidimetric assays

Clinical Chemistry: Precision Study Overview

Sample type and matrix	Li-Hep venous plasma
Control levels	Low analyte concentration High analyte concentration
Study Design	3 miniLabs x 5 Days x 5 Tests per day (CLSI EP05-A3)
Analysis	Analysis of variance to determine repeatability, within-lab variability, and reproducibility

Multi-miniLab Precision Study Design

Repeatability

(within-run/day) one day-one device baseline variance of assay system

Within-laboratory

(within-miniLab) intermediate precision, includes day-to-day variability

Reproducibility

encompasses imprecision across multiple devices or sites

Clinical Chemistry: Precision Results Meet Performance Criteria

Analyte	Mean	Repeatability CV (Within-day)	Within-laboratory CV (Within-miniLab)	Reproducibility CV (Across 3 miniLabs)
Total	120 mg/dL	1.5%	1.6%	1.6%
Cholesterol	320 mg/dL	1.7%	1.8%	2.0%
Trialvooridoo	78 mg/dL	1.9%	1.9%	2.6%
inglycendes	405 mg/dL	3.9%	4.4%	4.4%
LDL Cholesterol	71 mg/dL	3.6%	3.6%	3.7%
	203 mg/dL	2.2%	2.4%	2.4%
HDL Cholesterol	40 mg/dL	2.4%	2.4%	2.5%
	84 mg/dL	2.3%	2.5%	2.8%
Potassium	2.9 mmol/L	2.8%	3.4%	6.6%
	6.0 mmol/L	2.6%	2.7%	2.8%

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

theran_s

Clinical Chemistry: Method Comparison Study Overview

Population	Apparently healthy subjects and archived samples		
Sample type and matrix	Li-Hep venous plasma		
Comparator	Siemens ADVIA 1800		
Number of miniLabs	7 for potassium 9 for lipids		
Study design	n > 100 subjects (per CLSI EP09-A3)		
Analysis	Passing-Bablok regression analysis and calculate median bias		

Potassium on miniLab Correlates to Comparator **Method for Venous Plasma**

Legend: Lipids on miniLab Correlate to - Unity (y = x) – Allowable total error **Comparator Method for Venous Plasma** NCEP (Clin Chem 1988;34:193-201) NCEP (Clin Chem 1997;43:2164-2168)

miniLab HDL Assay Accuracy Confirmed With NIST Standard

Instrument	Replicates		Level 1	Level 2
NIST True Value	N/A	Assigned	41.0 mg/dL	64.9 mg/dL
minil ob	0	Mean	39.9 mg/dL	67.1 mg/dL
minicad	9	Difference	-3%	3%
Comparator	25	Mean	36.7 mg/dL	63.9 mg/dL
Method	20 -	Difference	-10%	-2%

Clinical Chemistry Assays on miniLab Meet Allowable Total Error Criteria

Analyte	miniLab Total Analytical Error	Allowable Total Error
Potassium (mmol/L)	0.28 mmol/L	< 0.5 mmol/L ¹
Total Cholesterol (mg/dL)	4.0%	< 9% ²
Triglycerides (mg/dL)	4.5%	< 15% ³
LDL Cholesterol (mg/dL)	9.5%	< 12% ³
HDL Cholesterol (mg/dL)*	7.8%	< 13% ³

Total analytical error = median bias + 2 * within-laboratory CV or SD *HDL bias against NIST standard was used in this calculation ¹ CLIA (Federal Register 1992;57(40):7002-186) ² NCEP (Clin Chem 1988;34:193-201) ³ NCEP (Clin Chem 1997;43:2164-2168) This technology has not been cleared or approved by the FDA and is not for sale in the United States.

Immunochemistry: Precision and Method Comparison

Immunochemistry: Luminometer & Fluorometer

Microtip Collection mirror Photodetector E

Luminometer

theranes

Immunochemistry: Precision Study Overview

Sample type and matrix	Venous serum
Control levels	Low titre sample (High Negative) High titre sample (Low Positive)
Study Design	3 miniLabs x 5 Days x 5 Tests per day (CLSI EP05-A3)
Analysis	Analysis of variance to determine repeatability, within-lab variability, and reproducibility

Immunochemistry: HSV-2 IgG Precision Results Show Acceptable %CV

Analyte	Index Value	Repeatability CV (Within-day)	Within-laboratory CV (Within-miniLab)	Reproducibility CV (Across 3 miniLabs)
HSV-2 -	0.75 (L)	7.6%	7.6%	7.7%
	1.06 (H)	7.3%	7.5%	7.7%

(L): low titre sample; (H): high titre sample Other industry standard assays approved by FDA: K120625, K090409, K081687 This technology has not been cleared or approved by the FDA and is not for sale in the United States.

Immunochemistry: Method Comparison Study Overview

Population	At risk for Herpes (intended use population)		
Samples type and matrix	Venous serum		
Comparator	Focus HerpeSelect 1 & 2 Immunoblot		
Number of miniLabs	7		
Study design	CLSI EP12-A2		
Analysis	Compute negative and positive percent agreement compared to comparative method		

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

30

Immunochemistry: HSV-2 IgG Measurements are Consistent with Comparator Method

	Theranos/ Immunoblot	Percent Agreement	95% Confidence Interval
Negative percent agreement (specificity)	127 / 127	100%	(97.1%, 100%)
Positive percent agreement (sensitivity)	71 / 75	94.7%	(87.1%, 97.9%)

Other industry standard assays approved by FDA: K120625, K090409, K081687

Hematology and Immunology: Precision and Method Comparison

Hematology and Immunology: Cytometer

th

Hematology and Immunology: Assay Methodology

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

algorithms

theran s

Hematology and Immunology: Image Processing

Pseudocolor image of T-cell image with select staining shown. CD4 in green, CD8 in magenta, CD3 in blue, Nucleus in Red.

T Cell, B Cell, NK Cells (TBNK, Lymphocyte Subset): Precision Study Overview

Sample type and matrix	atrix Quality control material (R&D Systems StatusFlow)	
Control levels	CD4 Low (all other analytes normal) CD4 Normal (all other analytes normal)	
Study Design	3 miniLabs x 5 Days x 5 Tests per day (CLSI EP05-A3)	
Analysis	Analysis of variance to determine repeatability, within-lab variability, and reproducibility	

36
Lymphocyte Subset: Precision Results Meet Performance Criteria

Analyte	Mean (cells/μL)	Repeatability CV (Within-day)	Within-laboratory CV (Within-miniLab)	Reproducibility CV (Across 3 miniLabs)
Total T cells	841	2.5%	3.2%	3.3%
CD4+ T cells	153 (L)	4.6%	5.0%	5.3%
	838 (N)	2.7%	2.7%	2.8%
CD8+T cells	571	3.5%	3.9%	4.1%
B cells	357	4.5%	4.7%	4.7%
NK cells	308	5.3%	5.4%	6.1%
Lymphocytes	1533	2.7%	2.8%	3.1%

(L): low cell count; (N): normal cell count This technology has not been cleared or approved by the FDA and is not for sale in the United States.

Lymphocyte Subset: Method Comparison Study Overview

Population	Apparently healthy subjects, and <15% adjusted to abnormal levels
Sample type and matrix	K ₂ -EDTA venous whole blood
Comparator	BD Multitest 6-color TBNK Reagent with Trucount Tubes on FACSCanto II (BD TBNK)
Number of miniLabs	6
Study design	n > 100 subjects (per CLSI EP09-A3) 1 replicate on miniLab, 2 replicates on comparator method
Analysis	Weighted Deming regression analysis and calculate median bias

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

38

Lymphocyte Subset: Counts Correlate with Comparator Method

¹ Clin Chim Acta, 2015;438:166-170. Ann Clin Biochem 1997;34:8-12. This technology has not been cleared or approved by the FDA and is not for sale in the United States.

theran_s

Lymphocyte Subset: Counts Correlate with Comparator Method

Lymphocyte Subset: Counts Meet Allowable Total Error Criteria

Analyte (cells/µL)	miniLab Total Analytical Error	Allowable Total Error ¹
Total T cells	6.7%	< 19.8%
CD4+T cells*	10.8%	< 19.6%
CD8+T cells	9.2%	< 21.4%
B cells	10.3%	< 26.1%
NK cells	14.3%	< 35.8%
Lymphocytes	6.1%	< 17.6%

Total analytical error = median bias + 2 * within-laboratory CV *CV of Low CD4 cell count was used in this calculation ¹ Clin Chim Acta, 2015;438:166-170; Ann Clin Biochem 1997;34:8-12 This technology has not been cleared or approved by the FDA and is not for sale in the United States.

Molecular Biology: Nucleic Acid Amplification (NAA) Zika Assay in Venous Serum on miniLab – Performance Characteristics

Nucleic Acid Amplification (NAA): Fluorescencebased Isothermal Detector and Thermocycler

Fluorescence-based Isothermal Detector

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

theran_s

miniLab NAA Assays – Methodology

- Magnetic bead-based extraction of nucleic acids
- Isothermal amplification and detection
- RT-PCR based pre-amplification using thermocycler module
- High sensitivity achieved through integrated on-board sample extraction, amplification, and detection
- Primers designed using multisequence gene alignment

Molecular Biology: NAA Zika Assay is Sensitive for the Target Gene

Zika Concentration (copies/mL)	N (Positive) / N (Replicates)	% Positive
1920	6/6	100%
960	6/6	100%
480 (LoD)	25/26	96%
160	4/6	67%
32	2/6	33%
0	0/6	0%

LoD for CDC Zika test = 930 copies/mL Emerg Infect Dis 2008;14:1232-1239

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

45

Molecular Biology: NAA Zika Assay Does Not Cross-React or Show Interference with Pathogens

Virus/Bacteria/Parasite	Concentration	Cross-Reactivity (0 copies/mL Zika) % Positive	Interference (recovery of 960 copies/mL Zika) % Positive
P. falciparum	1 x 10 ⁶	0%	100%
Dengue Virus Types 1-4	1 x 10 ⁶	0%	100%
West Nile Virus Types 1 & 2	1 x 10 ⁶	0%	100%
Chikungunya Virus	5 x 10 ³	0%	100%
Yellow Fever Virus	1 x 10 ⁴	0%	100%
Parvovirus	1 x 10 ⁶ IU/mL	0%	100%
Mayaro Virus	1 x 10 ⁶	0%	100%

Molecular Biology: NAA Zika Assay Does Not Cross-React or Show Interference with Substances

	Concentration	Cross-Reactivity (0 copies/mL Zika)	Interference (recovery of 960 copies/mL Zika)
Interfering Substance	(copies/mL)	% Positive	% Positive
Bilirubin	342 µM	0%	100%
Cholesterol	13 mM	0%	100%
EDTA, pH 8·0	6.2 mM	0%	100%
Gamma Globulin	5 mg/mL	0%	100%
Hemoglobin	5 mg/mL	0%	100%
Heparin Lithium Salt	19 U/mL	0%	100%
Human Genomic DNA	4 µg/mL	0%	100%
Triglyceride Mixture (C2-C10)	37 mM	0%	100%
Sodium Citrate	0.25% (w/v)	0%	100%

n = 3 replicates per test

Molecular Biology: NAA Zika Assay Inclusive for Other Zika Strains

Zika Virus Strain	Zika Concentration (copies/mL)	N Positive/N Replicates
DakArD 41662	960	3/3
MR 766	960	3/3

Current outbreak strain: PRVABC59 (Asian)

Molecular Biology: NAA Zika Assay Shows No Carryover

Round	Zika Concentration (copies/mL)	N Positive/N Replicates	% positive
1	1.3 x 10 ⁷	5/5	100%
I	0	0/5	0%
2	1.3 x 10 ⁷	5/5	100%
Ζ	0	0/5	0%
2	1.3 x 10 ⁷	5/5	100%
3	0	0/5	0%
Δ	1.3 x 10 ⁷	5/5	100%
4	0	0/5	0%
F	1.3 x 10 ⁷	5/5	100%
J	0	0/5	0%

49

NAA Zika Assay – Clinical Study Overview

Population	Healthy, febrile, or Zika symptomatic pathologicals
Sample type and matrix	Venous serum
Analyzers & Assays	24 miniLabs CDC RT-PCR assay altona RealStar® (EUA Authorized Method)
Study design	FDA EUA guidance
Analysis	Compute negative and positive percent agreement compared to the comparative methods

Molecular Biology: NAA Zika Assay with Venous Serum is Consistent with Comparators

	Theranos/ Comparator	Percent Agreement	95% Confidence Interval
Negative percent agreement	108 / 113	95.6%	(90.1%, 98.1%)
Positive percent agreement	67 / 67	100%	(94.6%, 100.0%)

Venous Serum (N=180)

78 from US (healthy and febrile subjects)

102 from Dominican Republic and Colombia (Zika symptomatic)

Theranos Sample Processing Unit (miniLab)

Presentation Overview

- I. Miniaturization of laboratory testing
- II. miniLab results across detection methodologies

III. Small sample volumes: collection of capillary blood and analysis

Capillary Collection Optimization of Collection Variables

- Sample site preparation (detergent-based wipes and alcohol dry time)
- Wiping away first drop(s)
- Finger-stick techniques (minimize milking)
- Lancet selection (gauge and depth)
- Arterialization of capillary blood

Theranos Sample Collection Device

Sample Collection Device Design

Challenges	Theranos Design Considerations
Hemolysis	 Capillary tubes Shape and diameter of capillary tubes and needles Anti-coagulant coating
Clotting	 Anti-coagulant concentration Rapid mixing of sample with anti-coagulant Fill volume indicators
Altered cell morphology	 Optimized anti-coagulant concentration

Optimized anti-coaguiant concentration •

Collection and Activation

Blood drawn from lanced fingertip via capillary action

Collection unit pressed into housing. Needles puncture through nanotainer caps, sliding plungers downward, like the action of a syringe. Specimen is drawn into each nanotainer (170 μ L blood total) and simultaneously mixed with anti-coagulant (EDTA and/or Li-Hep)

Nanotainer tubes removed for storage, transport, and processing. 2D barcode used to maintain traceability

3

Video of Capillary Collection Process

Sample Container Box for Shipping

Matrix Comparison on miniLab

Lipid Panel: Matrix Comparison Study Overview

Population	Apparently healthy subjects
Sample type and matrix	Li-Hep capillary whole blood and venous plasma
Analyzers	8 miniLabs Siemens ADVIA 1800
Study design	2 replicates each matrix on miniLab 2 replicates for venous on comparator method
Analysis	Passing-Bablok regression analysis and calculate median bias

Capillary Total Cholesterol Correlates to Venous

¹NCEP (Clin Chem 1988;34:193-201)

Lipid Panel: Capillary Bias Summary

	Capillary miniLab vs Venous miniLab		Capillary miniLab vs Venous ADVIA	
Analyte	R ²	Median Bias	R ²	Median Bias
Total Cholesterol (mg/dL)	0.98	0.6%	0.98	-0.5%
HDL Cholesterol (mg/dL)	0.96	1.9%	0.96	11.6%
LDL Cholesterol (mg/dL)	0.97	0.6%	0.95	1.4%
Triglycerides (mg/dL)	1.00	3.7%	1.00	5.5%

Passing-Bablok regression

Lymphocyte Subset: Matrix Comparison Study Overview

Population	Apparently healthy subjects		
Sample type and matrix	K ₂ -EDTA capillary and venous whole blood		
Analyzers	6 miniLab TBNK on Becton Dickinson FACSCanto II		
Study design	1 replicate each matrix on miniLab 2 replicates venous on comparator method		
Analysis	Passing-Bablok regression analysis and calculate median bias		

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

64

Capillary CD4+ T cell Count Correlates to Venous

¹ Clin Chim Acta, 2015;438:166-170; Ann Clin Biochem 1997;34:8-12 This technology has not been cleared or approved by the FDA and is not for sale in the United States.

Lymphocyte Subset: Capillary Bias Summary

	Capillary	Capillary miniLab vs Venous miniLab		Capillary miniLab vs Venous BD TBNK	
Analyte	R ²	Median Bias	R ²	Median Bias	
Total T cells	0.93	3.7%	0.92	4.9%	
CD4+T cells	0.94	4.2%	0.93	4.6%	
CD8+T cells	0.92	5.9%	0.94	6.4%	
B cells	0.93	6.1%	0.92	5.6%	
NK cells	0.84	9.6%	0.90	8.9%	
Lymphocytes	0.88	4.3%	0.89	6.8%	

Passing-Bablok regression

NAA Zika Assay: Clinical Study Overview

Population	Healthy or Zika symptomatic		
Sample type and matrix	Capillary whole blood, venous serum, and urine		
Analyzers & assays	20 miniLabs CDC RT-PCR assay altona RealStar® (EUA Authorized Method)		
Study design	FDA EUA guidance		
Analysis	Compute negative and positive percent agreement compared to the comparative methods		

Molecular Biology: NAA Zika Assay with Capillary Whole Blood is Consistent with Comparators

	NAA/ CDC & altona	Percent Agreement	95% Confidence Interval
Negative percent agreement	56 / 56	100%	[93.6, 100.0]%
Positive percent agreement	50 / 51	98%	[89.7, 99.7]%

Capillary whole blood, venous serum, and urine (n = 107) 77 from US (apparently healthy) 30 from the Dominican Republic (Zika symptomatic)

Capillary LoD = 320 copies/mL

Theranos Technologies

Reagents and Assays for Small-Volume Samples

Acknowledgments

Manufacturing Video

Acknowledgments

This technology has not been cleared or approved by the FDA and is not for sale in the United States.

72
Theranos Science & Technology: The Miniaturization of Laboratory Testing

Elizabeth Holmes therans

August 1, 2016